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Abstract

The main purpose of this paper is to study, in a three-dimensional, differentially heated cavity, the phenomenon of

radiation and natural convection in both transparent and participating media. The discrete ordinates method (DOM) is

used to solve the radiative transfer equation. The Navier–Stokes equations (NSE), describing natural convection, are

solved with a segregated SIMPLE-like algorithm. For non-participating media, the coupling between the radiative

transfer and NSE is done via the radiative heat exchange between surfaces. For participating media, a source term is

added in the energy equation. The local and mean heat flux as a function of the Rayleigh number is studied, for both

transparent and participating media with different optical thicknesses. The effect of the Planck number on the heat flux

is also analyzed for different values of the Rayleigh number. Also, a comparison between a purely two-dimensional case

and the results obtained in the mid-plane of a long rectangular enclosure is presented.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Research on the analysis and numerical resolution of

heat transfer and fluid flow phenomena where radiant

heat exchange has an essential contribution, becomes a

key aspect for the employment of CFD simulations as a

worthwhile complement to experimental research into

industry-related problems. These problems involve the

resolution of the Navier–Stokes equations (NSE) and

the radiative transfer equation (RTE). The resolution of

the RTE implies a considerable computational cost due

to the directional nature of the intensity radiation field.

This high computational cost limits detail in the simu-

lation of coupled radiation and convection. Therefore,

improvements of the numerical methods and funda-
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mental analysis of this complex phenomena have moti-

vated interest in the scientific community.

The main purpose of this paper is the analysis of

natural convection phenomenon coupled with radiant

exchange in a three-dimensional differentially heated

cavity. The differential heated cavity problem is a clas-

sical benchmark test commonly used in the process of

CFD codes verification. In this sense, numerical results

presented in this work are also addressed to the CFD

developers in the task of verifying their codes. Although

benchmark solutions can be found for both 2D and 3D

discretizations, as in [1–5], the consideration of radiation

effects is restricted to 2D geometries. There are also re-

ported solutions to three-dimensional problems [6,7],

but only taking into account the radiative heat transfer.

The proposed problem has been solved for a range

of Rayleigh and Planck numbers, which are the rele-

vant dimensionless numbers for this case, and consid-

ering both transparent and gray, purely absorbing
ed.
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Nomenclature

cp specific heat [JK�1 kg�1]

~gg gravitational field [m s�2], ~gg ¼ gûug
I	 dimensionless intensity radiation field,

I=rBT 4
c

IB blackbody emission [Wm�2]

k thermal conductivity [Wm�1 K�1]

L length of cubic cavity [m]

Na, Np number of azimuthal and polar directions

P 	 dimensionless pressure, P=ðLq0gbDT Þ
Pl Planck number, kDT=ðLrBT 4

c Þ
Pr Prandtl number, lcp=k
Q	 dimensionless total heat flux, Q	

c þ Q	
r

Q	
c dimensionless convective heat flux,

�ðLoT=oxÞ=DT
Q	

r dimensionless radiative heat flux, LQr=kDT
Ra Rayleigh number, gbDTL3q2

0cp=ðklÞ
ŝsi discrete ordinate

T 	 dimensionless temperature, ðT � TcÞ=DT

T0 mean temperature, ðTh þ TcÞ=2 [K]

T 	
0 reference temperature ratio, Tc=DT

Tc, Th cold and hot temperatures [K]

DT temperature gap, Th � Tc [K]

~vv	 dimensionless velocity,~vv=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LgbDT

p

x	, y	, z	 dimensionless coordinates, x=L, y=L, z=L

Greek symbols

b thermal expansion coefficient [K�1]

d difference between two meshes

j absorption coefficient [m�1]

l dynamic viscosity [kgm�1 s�1]

li; mi direction cosines

q0 reference density [kgm�3]

rB Stephan–Boltzmann constant

s optical thickness, jL

Symbol
~r	 dimensionless derivative, L~r
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homogeneous medium. In the latter case different op-

tical thickness are considered. The effects of radiation

are shown and compared to the case where radiation is

neglected. The radiation contribution is solved using

the discrete ordinates method (DOM), first developed

in radiative transfer problems by Truelove [8] and

Fiveland [9]. Special emphasis is given to its special

features when solving three-dimensional problems.
2. Discretization of the RTE using the discrete ordinates

method

The RTE, used to determine the intensity radiation

field, accounts for the variation of the energy carried by

a ray beam in direction ŝs due to its interaction with the

medium in which it is propagating. The equation that

properly describes such variation, for a gray and purely

absorbing (non-scattering) medium with absorption co-

efficient j, reduces to

ŝs � ~rIð~rr; ŝsÞ ¼ �jðIð~rr; ŝsÞ � IBð~rrÞÞ ð1Þ

which is a conservation optical balance equation. Once

the intensity radiation field is known, the energy flux due

to radiation through an arbitrarily oriented surface,

whose perpendicular vector is n̂n, can be calculated as:

Qrðn̂nÞ ¼
Z
4p
ðn̂n � ŝsÞIð~rr; ŝsÞdŝs ð2Þ

The outstanding aspect of DOM is that such an integral

is computed with a low computational cost method,

which is analogous to the Gauss–Legendre method. It
consists of the substitution of the integral with a

weighted summation of the integrand at selected points

(ordinates) of the integration domain. The following

assumption is made:Z
4p
ðn̂n � ŝsÞIð~rr; ŝsÞdŝs ’

XN
i¼1

xiðn̂n � ŝsiÞI i ð3Þ

The choice of the weights and ordinates must be done

carefully, and there are several ways to proceed [9–11].

In the following section, a method to choose the ordi-

nates, which is suitable for three-dimensional geo-

metries, is presented. Once the N ordinates are chosen,

the differential equation (1) is solved precisely for such

directions and becomes a linear system of N differential

equations. The resulting linear system can be written as

ŝsi � ~rI i ¼ �jI i þ jIB ð4Þ

for 16 i6N . ŝsi stands for the ith discretized ordinate.

The right hand side of Eq. (4) accounts for the effects

exerted by the medium on the intensity radiation field.

The discretization of the variation term, that is, the

left hand side of Eq. (1), is straightforward in cartesian

coordinates. In Fig. 1(a), the precise definition of the ŝsi
direction is shown. To simplify the notation, the short-

cuts li ¼ cos hi and mi ¼ cosui are defined. Also, l	
i is

defined as l	
i ¼ ð1� l2

i Þ
1=2

(resp. m	i ). It is therefore not

difficult to see that

ŝsi � ~rI i ¼ limi
oI i

ox
þ l	

i

oI i

oy
þ lim

	
i

oI i

oz

Next, the finite volume technique is applied, which

consists of the integration of the RTE equation over a



Fig. 1. Discretization of the RTE. Definition of direction ŝsi (a) and typical control volume (b).
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control volume such as that shown in Fig. 1(b). The

result is an equation relating the value of the intensity at

the nodal point, I iP , to the intensity at each adjacent face

I ie, I
i
w, I

i
n, I

i
s, I

i
t and I ib. By assuming a linear relation such

as I iP ¼ fI ie þ ð1� f ÞI iw (and the same for the y- and z-
axis) the intensity radiation field at P can be explicitly

written in terms of the values of the intensity field on

three faces. The factor f accounts for different numerical

schemes in a single formulation.

For each control volume, the explicit value of in-

tensity at nodal point P is

I iP ¼
limiDyDzI

i
x þ l	

i DxDzI
i
y þ lim

	
i DxDyI

i
z þ fjIBDxDyDz

limiDyDzþ l	
i DxDzþ lim

	
i DxDy þ fjDxDyDz

ð5Þ

where, for instance, I ix equals I
i
w for radiation travelling

from west to east, i.e. �p=26ui 6 p=2 and I ix equals I ie
otherwise ––see Fig. 1(a). Similar considerations apply

for I iy and I iz. All the results given throughout the paper

were obtained with an upwind scheme, that is, by setting

f ¼ 1.

It is important to recall that, strictly speaking, the

above discretization is valid for a given wavelength.

While we consider gray media here, the method can be

easily extended to non-gray media.
3. Choosing the discrete ordinates

The proper choice of weights and ordinates is very

important, even in the simplest of cases where weights

are taken to be constant. All results presented here make

use of such a constant weight scheme.

One special requirement when choosing the discrete

ordinates is the conservation of energy, that is, discrete
ordinates and weights must give an exact value of the

integral in Eq. (2). Whatever the set of ordinates chosen,

it must satisfy the discretized equivalent condition

which, according to Fig. 1(a), can be written asX
i

limi ¼
X
i

l	
i ¼

X
i

lim
	
i : ð6Þ

The condition of energy conservation that should satisfy

ŝsi comes from Eq. (3) with n̂n 2 f̂ıı; |̂|; k̂kg and n̂n � ŝsP 0. In

order to find the correct weight, it should be noted that,

for example, the evaluation of Eq. (3) for n̂n parallel to

the x-axis and constant intensity radiation field is

p ¼
Z
ı̂ı�ŝsP 0

ð̂ıı � ŝsÞdŝs ’ 4x
X
i

limi; ð7Þ

where an additional factor of 4 appears since the ordi-

nates are only defined for one octant and the sum ex-

tends over four octants. A set of directions verifying the

above conditions can be obtained as follows: given Np

and Na directions with constant polar (resp. azimuthal)

angle hl (resp. um), N is the total number of ordinates in

an octant N ¼ NaNp. Therefore the values of the angles

are

um ¼ p
4Na

ð2m� 1Þ and hl ¼ a þ ðl� 1Þc;

where 16m6Na and 16 l6Np. Also a ¼ arctan n�
pðNp � 1Þ=6Np, 1=n ¼ 2Na sinðp=4NaÞ and c ¼ p=3Np.

With those definitions of the discretized directions, it

can be seen, by taking the limits Np ! 1 and Na ! 1,

that while the azimuthal angles um lie in the range be-

tween 0 and p=2, the polar angles hl lie in a narrower

range, approximately p=6 radians above and below an

angle of arctanð2=pÞ (.32.5�), thus not covering the

whole octant. Despite this limitation, when the results



Table 1

Directions and weights in the first octant (xP 0, y P 0 and

zP 0) used to solve the RTE, all angles are in radians

Direction hi ui Weight

ŝs1 0.229613 0.392699 0.261799

ŝs2 0.229613 1.178097 0.261799

ŝs3 0.578679 0.392699 0.261799

ŝs4 0.578679 1.178097 0.261799

ŝs5 0.927745 0.392699 0.261799

ŝs6 0.927745 1.178097 0.261799
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obtained with this set of ordinates are compared to the

results obtained with more general sets, such as those in

[10] (p. 546, the so-called S8 approximation), there is a

good agreement. The comparison was made for radia-

tive equilibrium as well as for combined conduction and

radiation cases.

A number of ordinates must be chosen taking into

account that accurate results with admissible computa-

tional cost are desired. Three-dimensional DOM calcu-

lations for rectangular furnaces (such as the one in [6])

give accurate results with three directions per octant.

Assuming that this accuracy will also hold for the dif-

ferentially heated cavity, the choice Np ¼ 3 and Na ¼ 2

seems to be a reliable one. The resulting weights and

ordinates are given in Table 1.
4. The coupling between radiation and convection

The flow is assumed to be laminar and steady state.

All physical properties are taken to be constant, except

for the density to allow natural convection. The usual

Boussinesq approximation is used for the density in the

body force term

q ¼ q0ð1� bðT � T0ÞÞ

Under these assumptions, the NSE together with the

energy equation can be written in dimensionless form as

follows:

~r	 �~vv	 ¼ 0 ð8Þ

ð~vv	 � ~r	Þ~vv	 ¼ �~r	P 	 þ
ffiffiffiffiffiffi
Pr
Ra

r
r	2~vv	 þ T 	

�
� 1

2

�
ûug ð9Þ

ffiffiffiffiffiffiffiffiffiffi
RaPr

p
ð~vv	 � ~r	ÞT 	 ¼ r	2T 	 � ~r	 � ~QQ	

r ð10Þ

where the radiative dimensionless divergence term is

calculated as the difference between the emission and the

absorption:

~r	 � ~QQ	
r ¼

s
Pl

4
T 	

T 	
0

�"
þ 1

�4

�
Z
4p
I	ð~rr; ŝsÞdŝs

#
ð11Þ
and I	ð~rr; ŝsÞ is the dimensionless intensity radiation field

which solves equation (1).

For the optically thick limit (i.e. s ! 1) the additive

model was considered. This model consists in indepen-

dently solving the radiative equilibrium case for a large

optical thickness and the NSE without taking into ac-

count radiation effects. Therefore, the total heat flux is

the addition of the heat flux given by each independent

solution.

The flow structure and the temperature distribution

are governed, for a given optical thickness s, by the

Rayleigh number (Ra), the Prandtl number (Pr), the

Planck number (Pl) and T 	
0 ,

Ra ¼ gbDTL3q2
0cp

kl
; Pr ¼ lcp

k
;

Pl ¼ kDT
LrBT 4

c

; T 	
0 ¼ Tc

DT
ð12Þ

The Planck number is a measure of the conduction heat

transfer relative to a mean heat transfer due to radiation.

It is clear from Eqs. (11) and (12) that, as the thermal

conductivity k increases, the Planck number also in-

creases and the radiation effects become less noticeable.

The adiabatic boundary condition includes a conduction

term and a radiation term Q	
r ðn̂nÞ, calculated with the aid

of Eq. (2). The temperature at any of the adiabatic walls

is such that

n̂n � ~r	T 	 ¼ Q	
r ðn̂nÞ: ð13Þ

For transparent media, radiation effects depend only on

the temperature of the boundaries, since ~r � ~QQ	
r is zero

inside the enclosure. From the above boundary condi-

tion it is clear that, for a large Planck number, the ra-

diation effects may be discarded since the temperature

gradient will be almost zero––the boundary condition

required when radiation effects are ignored.
5. Code verification

The numerical code employed in this work was ver-

ified by means of the resolution of several benchmark

problems, some of them with analytical solutions and

others given in the literature. Among them, the code was

verified considering problems where radiation plays a

dominant role, problems with transparent and partici-

pating media and problems considering 2D-coupled ra-

diation and natural convection. The main results of this

verification process are described in [5].

In this work, the verification of three-dimensional

geometries has been completed and the simulation of a

rectangular furnace has been taken into account, com-

paring the results obtained with those presented by

Meng€uuc� and Viskanta [7]. This comparison is described

in detail in the next section.



Fig. 2. Problem description of the validation case.

Fig. 3. Temperature profiles for z ¼ 2 m. Data from Ref. [7]

corresponds to zonal method.
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5.1. Rectangular furnace

The three-dimensional rectangular furnace studied

encloses a purely absorbing medium (see Fig. 2). The

dimensions are 2 m · 2 m· 4 m––in the x, y and z di-

rections respectively. The walls of the small faces are at

1200 and 400 K while the other four walls are main-

tained at 900 K. The walls are supposed to reflect and

emit diffusively, and to have emissivities of 0.85 for the

hot wall and 0.7 for the remaining walls.

In this problem, conduction and convection effects

are neglected. Hence, the medium is assumed to be at

radiative equilibrium, with an additional homogeneous

heat source of S ¼ 5 kW/m3. The radiative equilibrium

condition implies that the only term in the energy

equation is the divergence of radiative heat. In the

presence of a source term S, the energy equation is

simply ~r � ~QQr þS ¼ 0. Using the dimensional form of

Eq. (11), the temperature that makes the energy equa-

tion hold can be calculated as

Treð~rrÞ ¼
1

4rB

Z
4p
Ið~rr; ŝsÞdŝs

	�
�S

j


�1
4

Two different absorption coefficients, j ¼ 0:5 m�1 and

j ¼ 1 m�1, are considered. The results plotted in Figs. 3

and 4 and were computed with a 40· 40· 80 control

volume mesh, considering Np ¼ 4 and Na ¼ 3.

The temperature distribution at mid-height on the

hot wall (for z ¼ 2 m and y ¼ 1 m) is plotted as a

function of the dimensionless x	 direction in Fig. 3. The

agreement between the results presented in [7] and the
results obtained with the DOM method is quite good.

It can be observed that temperatures near the walls are

not exactly the imposed wall temperatures (900 K);

the reason being that heat conduction has been ne-

glected.

The net heat flux on the hot wall and at mid-height

(z ¼ 0 m and y ¼ 1 m) as a function of the dimensionless

x	 direction is plotted in Fig. 4. Lower net heat fluxes in

comparison with those reported in [7] are obtained, es-

pecially for the optically thinner medium. The differ-

ences may be due to the fact that a coarser mesh than the

one used in this work was used in [7], and also that the



Fig. 4. Radiation heat flux at hot wall. Data from Ref. [7]

corresponds to P3 method.
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RTE was solved using spherical harmonics decomposi-

tion (P3 approximation). It has been shown that the

differential approximations of the P3 method are not

reliable for optically thin media (j < 1) [12]. In addition,

it has also been shown that the P3 method over-predicts

the heat flux values in these situations, which is consis-

tent with the results obtained here with the DOM.
6. Numerical results

A cubic enclosure containing a gray fluid is assumed,

shown in Fig. 5. Both transparent and participating
Fig. 5. Three-dimensional differe
medium are considered. The west wall is at Th and the

east wall at Tc with Th > Tc. The remaining four walls are

adiabatic. The walls of the cavity have been treated as

black bodies. The Prandtl number has been fixed to 0.71,

and a range of Rayleigh numbers, from Ra ¼ 103 to 106,

is studied. In the case of a transparent medium, a longer

cavity is also solved, where the depth of the domain is

four times that of the cube. The solution of this stretched

cavity is compared to a purely two-dimensional differ-

entially heated cavity.

Results are presented for the dimensionless total heat

flux at the hot wall, which can be calculated as

Q	 ¼
�
� oT 	

ox	
þ Q	

r

�
x	¼0

ð14Þ

Q	 has been considered the significant result to be pre-

sented for the three-dimensional differential cavity

solutions throughout this paper. Whenever possible,

radiation and convection contributions (Q	
r and Q	

c ) to

the total heat transfer are given.

6.1. Discretization

A study was performed to analyze the influence of the

mesh spacing on the final result. Four different meshes,

with 173, 333, 653 and 973 control volumes were used for

what was considered to be a reference problem (Ra ¼
106, Pr ¼ 0:71, Pl ¼ 0:016, T 	

0 ¼ 17 and s ¼ 1). The

conclusions obtained in this single problem have been

assumed for the range of governing numbers presented

in this paper.

The convergence to an asymptotic solution can be

observed by evaluating the mean differences of temper-

ature, radiative heat and velocity fields between one
ntial heated cavity scheme.



Table 2

Mean difference for temperature, radiative heat and velocity fields between two consecutive meshes, and mean heat flux at hot wall for

the benchmark differential heated cavity problem

Mesh dðT 	Þ dðQ	
r Þ dðv	xÞ dðv	yÞ dðv	z Þ Q	

17 · 17 · 17 – – – – – 14.42

33 · 33 · 33 2.0% 2.9% 2.7% 2.0% 2.1% 14.28

65 · 65 · 65 1.0% 1.5% 1.5% 1.1% 1.3% 13.84

97 · 97 · 97 0.2% 0.4% 0.6% 0.4% 0.4% 13.75

Ra ¼ 106, Pr ¼ 0:71, Pl ¼ 0:016, T 	
0 ¼ 17 and s ¼ 1.

Fig. 6. Average heat flux in the y	 direction versus depth z	.
Transparent medium, s ¼ 0, Pl ¼ 0:043, T 	

0 ¼ 15 and Pr ¼ 0:71.

Fig. 7. Average heat flux in the y	 direction versus the depth z	

without radiation. Pr ¼ 0:71.
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simulation and its previous coarser solution. In Table 2,

the mean differences and mean heat flux at the hot wall

are shown. As can be seen, differences lower than 1% are

obtained comparing the third and fourth discretizations.

These results motivate the selection of the third mesh

(i.e. the mesh with 653 control volumes) as fine enough

to perform the numerical studies. The set of ordinates

used for this benchmark problem is that obtained with

Np ¼ 3 and Na ¼ 2 (Table 1).
Table 3

Hot wall average heat flux

Ra With radiation Without radiation

Q	 Q	
r Q	

c Q	 Fusegi and

Min Hyun [1]

103 4.596 3.162 1.434 1.055 1.085

104 5.295 3.233 2.062 2.030 2.100

105 7.368 3.385 3.983 4.334 4.361

106 11.670 3.568 8.102 8.862 8.770

Q	
r and Q	

c are the radiation and convection contribution to the

total heat flux. Pl ¼ 0:043, T 	
0 ¼ 15, s ¼ 0 and Pr ¼ 0:71.

Table 4

Local extreme values for velocity and heat flux

Ra ¼ 103 Ra ¼ 104 Ra ¼ 105 Ra ¼ 106

v	x max 0.1250 0.2170 0.1869 0.1284

y	 0.808 0.838 0.869 0.900

z	 0.500 0.500 0.285y 0.208y

v	y max 0.1271 0.2333 0.2865 0.2985

x	 0.177 0.131 0.069 0.038

z	 0.500 0.269y 0.115y 0.069y

Q	 max 6.350 7.238 10.793 19.168

y	 �0 �0 0.192 0.069

z	 0.500 0.500 0.500 0.208y

Q	 min 3.960 3.729 3.724 4.025

y	 0.900 0.900 0.931 0.961

z	 0.085y 0.100y 0.085y 0.038y

v	x max refers the plane x	 ¼ 0:5 and v	y max to the plane

y	 ¼ 0:5. The maximum and minimum heat flux refer to the hot

wall (x	 ¼ 0). The �0 indicates that the maximum was obtained

on the first calculation node. The � symbol indicates that the

same value was also obtained at location 1� z	. All variables

are symmetric respect to the plane z	 ¼ 0:5. Transparent me-

dium, s ¼ 0, Pl ¼ 0:043, T 	
0 ¼ 15 and Pr ¼ 0:71.
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6.2. Transparent medium

The medium is assumed to be non-participating

(s ¼ 0). The Planck number is set to Pl ¼ 0:043 and

T 	
0 ¼ 15. For the stretched cavity, the number of control

volumes is doubled in the z-direction.
The first result presented in Fig. 6 shows the averaged

heat flux (in y	 direction) at the hot wall as a function of

the position along the z-axis when radiation is taken into

account. The simple case when radiation heat exchange

is ignored is plotted in Fig. 7. When both figures are

compared, it can be seen that radiation significantly in-

creases the heat transfer. The increase of the heat flux is

greatest for low Rayleigh numbers. The reason is that

the contribution of convection heat transfer becomes
Fig. 8. Transparent medium, s ¼ 0. Isothermal surfaces for Pl ¼ 0:04

Ra ¼ 104 (b), Ra ¼ 105 (c) and Ra ¼ 106 (d).
more important as Rayleigh number increases, and the

contribution of radiative heat transfer remains almost

constant (the Planck number has been kept constant).

The velocity field only affects the radiation field slightly,

through the variation of the temperature at the adiabatic

walls, according to Eq. (13).

The effect of radiation and convection on the heat

flux can clearly be seen in Table 3, where the average

heat flux is given. In Table 4 some local values of

the velocity field and heat flux are given. It can also

be observed in Fig. 6 that there is an increase of the

heat flux at both ends of the z-axis when radiation is

present. This effect is more intense for low Rayleigh

numbers. This increase is due to the influence of the

nearby walls.
3, T 	
0 ¼ 15, Pr ¼ 0:71 and four Rayleigh numbers: Ra ¼ 103 (a),



Fig. 9. Comparison between the two-dimensional solution and the three-dimensional stretched cavity. Transparent medium, s ¼ 0,

Pl ¼ 0:043, Pr ¼ 0:71 and Ra ¼ 106. Isothermals (solid lines for 3D cavity, dashed lines for 2D cavity) (a). Local heat flux number at hot

wall (b).
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In Fig. 8 isothermal surfaces are shown for all Ray-

leigh numbers considered. For low Rayleigh numbers

the conduction heat transfer prevails and the isotherms

are nearly vertical (parallel to the gravity field). For high

Rayleigh numbers, the isotherms become more hori-

zontal, since the natural convection term, which domi-

nates the conductive term, tends to convey the hottest

fluid above the coldest. Thus the isotherms are nearly

horizontal (perpendicular to gravity field) in the middle

region of the enclosure.

The three-dimensional simulations have been com-

pared to two-dimensional results. The two-dimensional

enclosure is discretized in a 65· 65 control volume mesh.

In Fig. 9(a) the isotherms of the three-dimensional

cavity at z ¼ 2 (solid lines) and the isotherms of the

purely two-dimensional case (dashed lines) are plotted.

A good agreement is achieved between both solutions.

This means that the effect of the end walls (z ¼ 0 and

z ¼ Lz) is small.

In Fig. 9(b) the local heat flux at the hot wall as a

function of the dimensionless height y	 is plotted for the

two-dimensional case, for a cubic three-dimensional case

and for the mid-plane of the 3D stretched cavity. As the

depth Lz of the box increases, the heat flux is closer to

the two-dimensional solution. Some differences persist

between three-dimensional and two-dimensional cases,

probably due to the effects of the end wall.

6.3. Participating medium

Now the medium is assumed to be participating, with

a specified optical thickness. The dimensionless reference

temperature is fixed to T 	
0 ¼ 17. In order to emphasize

the radiative effects, the Planck number is decreased to

Pl ¼ 0:016.
In Fig. 10, isothermal surfaces are shown for all

Rayleigh numbers tested, and for an optical thickness of

s ¼ 10.

A comparison of the averaged heat flux (in the y	

direction) for three-dimensional situations with partici-

pating medium has been carried out. Fig. 11 shows the

averaged heat flux versus the depth z	 for several optical
thicknesses: s ¼ 0 (non-participating medium), s ¼ 1,

s ¼ 10, additive model (optically thick limit) and a non-

radiating enclosure.

The participating medium gives lower values of the

heat flux than the non-participating one. This decrease is

due to the fact that radiative heat flux at the hot wall

decreases as the optical thickness increases. The radia-

tive heat exchange takes place between the hot wall and

an effective plane which has a higher temperature than

the cold wall. It is worth noting that the effect of the

increase of the local heat flux at both ends of the z-axis is
more important for transparent fluids. As the opacity of

the fluid increases, this effect tends to disappear.

In Fig. 12 the detailed contribution of convection and

radiation to the total heat flux is shown for different

values of Rayleigh number and the optical thickness.

The radiation contribution highly depends on the opti-

cal thickness s, while the convection contribution is

nearly independent of s, apart from wall effects on the

lower Ra ¼ 103 case (Fig. 12(a)). Also notice that for the

s ¼ 0 case, the radiation contribution is almost the same

for both values of Ra.
The mean heat flux, together with the convection and

radiation contribution at the hot wall for different

Rayleigh numbers and optical thickness are presented in

Table 5. Notice that Q	
c is nearly independent of the

optical thickness, while for s ¼ 0, Q	
r remains almost

constant for increasing values of the Rayleigh number.



Fig. 10. Participating medium, s ¼ 10. Isothermal surfaces for Pl ¼ 0:016, T 	
0 ¼ 17 and Pr ¼ 0:71 and four Rayleigh numbers:

Ra ¼ 103 (a), Ra ¼ 104 (b), Ra ¼ 105 (c) and Ra ¼ 106 (d).
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In Table 6, local values of the velocity field and heat flux

are given for a participating medium with s ¼ 10.

Additional results are presented in Fig. 13. The heat

flux increases if the Rayleigh number increases, and it

decreases for larger optical thickness. The figure also

shows the validity of the additive model for low Ray-

leigh numbers. Although the additive model is only

strictly valid for s ! 1, it can be seen in Fig. 13 that it

gives reasonable results for low Rayleigh numbers from

sP 30. For higher values of Ra the optical thickness

should be larger in order to apply the additive model.

The problem has also been solved for a range of

Planck numbers, for Ra ¼ 106 and Ra ¼ 105, Pr ¼ 0:71,
T 	
0 ¼ 17 and optical thickness s ¼ 1. The total heat flux

at the hot wall versus the Planck number is plotted in

Fig. 14. The two limiting cases are for Pl ! 1, when the
conduction heat transfer is more important than the

radiative heat transfer (the medium behaves as if no

radiation was present), and for Pl ! 0 (k ! 0), when the

medium is at a radiative equilibrium (there is no heat

flux due to conduction, and hence Q	 ! 1). The aver-

age heat flux behaves as expected and tends to the lim-

iting cases explained above.
7. Conclusions

In this paper, the coupling between radiation and

convection has been studied, for both transparent and

participating media, in a differentially heated cavity. The

influences of Rayleigh and Planck numbers, as well as

the optical thickness, are studied.



Fig. 11. Average heat flux at hot wall versus depth z	. Participating medium, Pl ¼ 0:016, T 	
0 ¼ 17 and Pr ¼ 0:71 and four Rayleigh

numbers: Ra ¼ 103 (a), Ra ¼ 104 (b), Ra ¼ 105 (c) and Ra ¼ 106 (d).

Fig. 12. Plot of detailed convection and radiation contribution to total heat flux through hot wall versus depth z	. Participating
medium, Pl ¼ 0:016, T 	

0 ¼ 17 and Pr ¼ 0:71. Two values of Ra are presented: Ra ¼ 103 (a) and Ra ¼ 106 (b).
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Table 5

Average heat flux at the hot wall for a range of Rayleigh numbers

Ra s ¼ 30 s ¼ 10 s ¼ 1 s ¼ 0

103 1.80 (0.50,1.30) 2.70 (1.16,1.54) 6.40 (4.64,1.76) 7.96 (6.20,1.76)

104 2.87 (0.79,2.08) 3.65 (1.54,2.11) 6.94 (4.69,2.25) 8.54 (6.28,2.26)

105 5.94 (1.60,4.34) 7.01 (2.80,4.21) 9.32 (5.44,3.92) 10.89 (6.52,4.37)

106 11.54 (2.86,8.68) 12.64 (4.36,8.28) 13.88 (6.25,7.63) 15.48 (6.84,8.64)

Radiative and convective contributions to total heat transfer are shown in parentheses, i.e. (Q	
r , Q

	
c ). Participating medium, with

Pl ¼ 0:016, T 	
0 ¼ 17 and Pr ¼ 0:71.

Table 6

Local extreme values for velocity and heat flux

Ra ¼ 103 Ra ¼ 104 Ra ¼ 105 Ra ¼ 106

v	x max 0.1304 0.2720 0.2620 0.1796

y	 0.823 0.838 0.869 0.900

z	 0.500 0.500 0.269y 0.223y

v	y max 0.1296 0.2805 0.3275 0.3282

x	 0.177 0.131 0.085 0.038

z	 0.500 0.500 0.131y 0.069y

Q	 max 3.115 5.767 11.569 22.260

y	 0.208 0.162 0.161 0.069

z	 0.500 0.500 0.346y 0.238y

Q	 min 2.147 1.593 1.864 2.658

y	 �1 �1 �1 �1

z	 �1y �1y �1y �1y

v	x max refers the plane x	 ¼ 0:5 and v	y max to the plane y	 ¼ 0:5. The maximum and minimum heat flux refer to the hot wall (x	 ¼ 0).

The �1 indicates that the maximum was obtained on the last calculation node. The � symbol indicates that the same value was also

obtained at location 1� z	. All variables are symmetric respect to the plane z	 ¼ 0:5. Participating medium, s ¼ 10, Pl ¼ 0:016, T 	
0 ¼ 17

and Pr ¼ 0:71.

Fig. 13. Mean heat flux at hot wall for several Rayleigh num-

bers. Participating medium, Pl ¼ 0:016, T 	
0 ¼ 17 and Pr ¼ 0:71.

Fig. 14. Total heat flux at hot wall versus Planck number.

Participating medium, s ¼ 1, T 	
0 ¼ 17, Pr ¼ 0:71.
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It has been shown that in a transparent medium the

radiation significantly increases the heat flux, and that

for a given Planck number and constant reference tem-

perature ratio, the contribution of radiation remains

almost constant for a range of Rayleigh numbers.

For participating media, defined by its optical

thickness, the heat flux also increases as the Rayleigh

number increases. On the other hand, an increase on the

optical thickness causes a decrease in the heat flux. The

optically thick limit tends to the case where radiation is

neglected, but with a higher thermal conductivity. The

explanation seems to be that, for large optical thickness,

radiation becomes a local phenomenon, behaving as a

conduction phenomenon, which, according to [13], can

be described with the Rosseland radiative conductivity

(the so-called diffusion approximation).

Also, for participating media, the additive model has

been shown to be accurate for low values of Ra. For
higher values of the Rayleigh number, the optical

thickness should be larger in order to apply the additive

model, which saves computational time and resources.

The effect of the Planck number has also been stud-

ied. It has been shown that, for Pl > 0:5, the radiation

effects can be neglected for low optical thickness. For

low Planck numbers (Pl < 0:01), the radiation effects

dominate and the convection terms of the governing

equations can be ignored, and the so-called radiative

equilibrium hypothesis can be applied.

All computations presented in this work were per-

formed on a AMD K7 900 Mhz processor with 512 MB

of RAM memory. A converged solution of the bench-

mark problem, with the normalized residual of the

temperature field lower than 10�9, takes an average of

three days with this computer.
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